

Kodak's AMSD Mirror Program

Overview and Cryo Test Results

Gary Matthews, David Barrett, James Bolton,
Roger Dahl, Elise Michaels, Mark Mallette, Josh Johnson
Eastman Kodak Company

Next Generation Optical Systems

- Next generation optical systems will need ultralightweight adaptive optics
 - James Webb Space Telescope (JWST)
 - Space Based Laser (SBL)
 - Terrestrial Planet Finder (TPF)
- Advanced Mirror Systems
 Demonstrator (AMSD)
 addresses these needs
 - Provides ultra-lightweight adaptive mirror technology and manufacturing assessment

Semi-Rigid Mirror Approach

- Kodak's concept for active mirror technology
 - Ultra-lightweight semi-rigid cored mirror with sparse force actuators
 - Very different than high density, displacement actuator approach
- Kodak built and demonstrated semi-rigid approach in 1989 on a 2.5 meter testbed
- The AMSD joint venture allows concept to be updated using latest technology

System phase and figure control to visible tolerances over long periods of time completed

Program History

AMSD ULE® mirror design baseline (circa 1999)

- Medium authority mirror with 16 figure control force actuators
- Optimized for warm applications
- Not in any baseline for NGST (JWST)
- ULE® has never been used for cryo applications

NGST/Ball/Kodak down selection for JWST changed everything

- Kodak AMSD ULE® mirror considered a viable back-up for beryllium low authority mirror baseline
- AMSD baseline medium authority design did not meet JWST figure control architecture

JWST team posed the question

- How can we learn the most about how a ULE® mirror will work at cryo temperatures?
- Kodak recommended eliminating the integration of the actuators and to test a "bare mirror" without actuators
 - Provides best insight into how a ULE® mirror would perform under cryo conditions
 - Radius of curvature control would be independent of material choice (Beryllium or ULE®)
 - With government concurrence, Kodak changed the integration plan and cryo testing in order to understand the applicability of a ULE® glass mirror for JWST cryo application

Cryo Test Configuration

Key Cryo Test Data Requirements

- Will a large ULE mirror survive a 25°K environment?
- What is the mirror's figure change during cool down from 290°K to 55°K?
 - Is this change repeatable
 - Drives Kodak's ability to cryo figure the JWST mirrors
- What is the mirror's figure change over the operational temperature range of 55°K to 30°K?
 - Is this change repeatable
 - Based on AMSD, can the wavefront and PSD requirements be met for a cryo figured mirror

AMSD-II Cryo Test Cycles

CDT

Cryo Survivability

- Mirror has successfully been through a 25K thermal soak
- Mirror has been through four additional cryo cycles to at least 50K
- No damage or degradation identified under careful inspection process by both Kodak and NASA personnel

Metrology Repeatability

- Based on test results, determine the optical test repeatability
 - Use difference maps to evaluate changes
 - Negates impact of gravity backout errors
- Use near ambient data since environmental influences are negligible for the ULE® material
- Data will determine the error bars that need to be used when evaluating cryo test data
 - Test uncertainty is about 46nm RMS

Test Reproducibility at Ambient (First and Second Cycles)

Ambient to Cryo Figure Change

Ambient to cryo shift

- Approximately 400nm (0.63 λ) RMS of surface change on the mirror
 - Larger than expected and driven by astigmatism

Repeatability

Mirror figure is repeatable to within the accuracy of the current metrology

Ion Figurable

- Requirement is for a 20nm mirror at cryo temperature
 - PSD requirement for mid-spatials
- Low order is easily correctable
- Higher order PSD requirement will be difficult
 - Skeletonized effect due to core structure
 - Analysis and demonstration in work

Ambient to Cryo Surface Figure Shift

Advanced Mirror System Demonstrator Program

Cryo Surface Repeatability

Ion Figuring Data

TAKE PICTURES. FURTHER.

Correction of High Spatial Frequency Error

- 0.43m (17") diameter plano generated to demonstrate Kodak's ability to remove cryo-induced quilting using ion figuring system
- Hit map generated from test data
- Process shows good convergence towards the desired surface

PSD Performance

- I Showing vacuum/293K AMSD data to JWST spec
- Did not attempt to correct quilting during processing
 - Processes are now capable of reducing the quilting to near negligible levels

Figure Change Over the Operational Temperatures

- Operational temperature is 30K to 65K based on latest NGST analysis of JWST
- Change over this temperature change is about 20nm RMS
- Quilting does not change significantly over the operating temperature

Figure Change Over Operational Temperature Range

Change in High Spatial Frequency Errors over Operational Temperature Range

Conclusions

Bulk temperature surface deformation is larger than expected

- Cause is under investigation by Kodak and Corning
 - Expect to be able to quantify the flight performance
- Global figure is repeatable and can be null figured into mirror
- Based on AMSD performance, PSD specification may be slightly higher than JWST specification
- Thermal sensitivity over operating temperature indicates a similar phenomenon but is small enough to be acceptable
 - Longer radius of curvature and stiffer mirror reduces impact for JWST

Special Thanks

Special thanks goes to the XRCF team at MSFC and UAH

- Jeff Kegley, Phil Stahl, Kevin Russell, Ron Eng, Harlan Haight, Barry Hale, Richard Siler, Greg St. John, Ernie Wright, Harry Rutledge, John Tucker, Ken Whitley, Bill Hogue
- James Hadaway, Pat Reardon, Ted Rogers
- and finally, as Jeff Kegley so aptly put it at the end of the cryo testing as the mirror was leaving in the Kodak truck after 3 months of testing

...what a long, strange trip it's been

Jerry Garcia